15 research outputs found

    Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    Get PDF
    Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications

    Bioengineered bioreactors: a review on enhancing biomethane and biohydrogen production by CFD modeling

    Get PDF
    Computational fluid dynamics (CFD) is numerical strategy developed for simulating the behavior of liquid and gas flow. CFD may be applied starting from aerospace, engine design, vehicle aerodynamics, power plants and chemical industries for analyzing and solving relevant system design and process issues. Biogas produced during anaerobic digestion (AD) is sustainable and renewable alternative to fossil fuels. AD may improve the controlled production of biogas and offers significant environmental benefits. This review focuses on research outcomes relevant for enhanced biogas production by exploring the possible applications of CFD in AD technology. CFD-related research performed in AD conditions in order to improve mixing performance, reduce power consumption, and understand the effects of total solid (TS) concentrations on flow behavior have been discussed. In addition, the use of AD for bio-hydrogen production, wastewater treatment, and sludge treatment are looked in. This review also identifies novel areas for AD technology advancement where there is potential for economic improvement in renewable energy production. Finally, future research needs have been identified, focusing on the opportunities to integrate conceptual and mathematical models for advancing CFD simulations for bioenergy

    GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview

    Get PDF
    Agriculture residue is a promising resource of energy. It can be seen as a source of power production. In India, there is a huge amount of biomass available, but it cannot be used in proper ways, and with the help of GIS it can be customised. In the present paper, it is estimated that biomass reserves are available for power generation. The biomass produced by the surplus agricultural crops is reflected as a source of fuel for electricity generation. The data taken by satellite are useful for assessment of the areas with the help of satellite images taken in high resolution, which increases the preciseness of estimation. An agriculture cropland map with agricultural statistics has been analyzed in GIS to discover the agricultural straw potential for bioenergy generation. Due to unawareness about the benefits and uses of GIS, the modern farming sector bears a loss of huge bioenergy potential every year. To overcome the above mentioned challenges, the agricultural system needs a major shift from conventional farming to smart farming practices with the help of GIS. Agricultural waste is the best source for bioenergy production, and it can be used as biomass for meeting renewable energy goals in the country

    Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    No full text
    Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications

    Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    No full text
    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches

    Organic Fraction of Municipal Solid Waste: Overview of Treatment Methodologies to Enhance Anaerobic Biodegradability

    No full text
    Organic fraction of municipal solid waste and its proper disposal is becoming a serious challenge around the world. Environmental pollution, public health risk, and scarcity of dumping land are the aftereffects of its improper disposal. Embodied energy recovery associated with the organic waste along with waste minimization may be achieved using anaerobic digestion. The chemical composition of the substrate plays a crucial role among the factors responsible for digestion performance and cumulative methane production. Treatment of substrate to enhance the digestion performance is gaining momentum in the recent years. This review provides an overview of different treatment methodologies including mechanical, thermal, chemical, biological, ultrasonic, and microwave approaches to enhance methane yield of anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Environmental impact analysis of treatment techniques, along with comparison of treatment methodologies and techno-economic assessment, has also been discussed to provide a proper insight into the various processing methods

    Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India

    No full text
    The anaerobic batch test (45 days at 37°C) was performed to describe the effect of thermal pretreatment at moderate temperatures (60, 80, and 100°C) over durations of 10 and 20 minutes on the enhancement of biogas production using hotel food waste from city of Jaipur, India. The results showed that the total cumulative biogas production with thermal pretreatment (100°C, 10 minutes) was 41% higher than the control. Also, this alternative gets first rank using multicriteria decision making model, VIKOR. This outcome was obtained due to the enhancement of degradation of organic compounds such as protein and volatile solids that occurred in the linear trend. Modified Gompertz and Logistic models were used to study the effect of different pretreatment parameters on lag time and biogas yield. Scanning electron microscopy and Fourier transform infrared spectroscopy were also employed to investigate the effect of thermal pretreatment on the physiochemical properties of food waste

    Solid state anaerobic digestion of water poor feedstock for methane yield: an overview of process characteristics and challenges

    No full text
    Solid state anaerobic digestion (SSAD) of water poor feedstock may be a promising technology for energy recovery. Feedstocks having high solid concentration like lignocellulosic biomass, crop residues, forestry waste and organic fraction of municipal waste may be the appropriate feedstock for its biochemical conversion into energy carries like biomethane through SSAD. Compared to liquid state anaerobic digestion (LSAD), SSAD can handle higher organic loading rates (OLR), requires less water and smaller reactor volume and may have lower energy demand for heating or stirring and higher volumetric methane productivity. Besides these, pathogen inactivation may also be achieved in SSAD of biodegradable waste. Around 60% of recently built AD systems have adopted SSAD technology. However, the process stability of an SSAD system may have several constraints like limited mass transfer, process inhibitors and selection of digester type and should be addressed prior to the implementation of SSAD technology. In this article, a comprehensive overview of the key aspects influencing the performance of SSAD is discussed along with the need for mathematical modelling approaches. Further to this, reactor configuration for SSAD and digestate management requirement and practice for solid-state condition are reviewed for a better insight of SSAD technology

    Bioengineered bioreactors: a review on enhancing biomethane and biohydrogen production by CFD modeling

    No full text
    Computational fluid dynamics (CFD) is numerical strategy developed for simulating the behavior of liquid and gas flow. CFD may be applied starting from aerospace, engine design, vehicle aerodynamics, power plants and chemical industries for analyzing and solving relevant system design and process issues. Biogas produced during anaerobic digestion (AD) is sustainable and renewable alternative to fossil fuels. AD may improve the controlled production of biogas and offers significant environmental benefits. This review focuses on research outcomes relevant for enhanced biogas production by exploring the possible applications of CFD in AD technology. CFD-related research performed in AD conditions in order to improve mixing performance, reduce power consumption, and understand the effects of total solid (TS) concentrations on flow behavior have been discussed. In addition, the use of AD for bio-hydrogen production, wastewater treatment, and sludge treatment are looked in. This review also identifies novel areas for AD technology advancement where there is potential for economic improvement in renewable energy production. Finally, future research needs have been identified, focusing on the opportunities to integrate conceptual and mathematical models for advancing CFD simulations for bioenergy

    Advances in Applications of Cereal Crop Residues in Green Concrete Technology for Environmental Sustainability: A Review

    No full text
    Concrete is mainly employed as a construction material. Due to the manufacturing of cement and the extent of concrete usage, numerous environmental issues and water suction have presented challenges. There is an immediate need to overcome these problematic issues by substituting natural resources with wastes and by-products of different biological processes in the production of concrete in order to make green concrete. Green concrete provides a relatively low-impact material to satisfy potential concrete demand and offers a cheaper, robust and highly reliable alternative that could fulfil future construction requirements in an environmentally safer way. The present review highlights the possible use of waste residues of agricultural origin from cereal farming in concrete as alternative materials to cement, fine aggregate and fiber reinforcement. The review also considers appropriate methods of treatment, the selection of residual resources and the blending ratios that may allow the development of next-generation green concrete with better physicochemical and mechanical properties. It also explores in-depth studies and the wider range of innovations in cereal farming residues for appropriate use in green construction for environmental sustainability. Green concrete could be an alternative material that could replace those used in conventional methods of construction and help make a further step towards environmental sustainability and a circular bioeconomy
    corecore